Вероятностные парадоксы

  • Парадокс Берксона: два независимых события становятся условно зависимыми при условии, что хотя бы одно из них произошло.
  • Парадокс Бертрана: различные определения случайной величины, основанные на «здравом смысле», дают различные результаты.
  • Парадокс дней рождения: какая вероятность того, что у двух учеников из одного класса день рождения совпадает? Оказывается — более 50 %, если учеников больше 23.
  • Загадка Монти Холла: в поисках автомобиля игрок выбирает дверь 1. Тогда ведущий открывает третью дверь, за которой находится коза, и предлагает игроку изменить свой выбор на дверь 2. Увеличиваются ли шансы игрока при выборе двери 2?
  • Парадокс Бореля (англ.): плотность условной вероятности не инвариантна при преобразованиях координат.
  • Пол второго ребенка: если один из двух детей в семье — мальчик, какова вероятность того, что второй ребёнок — девочка?
  • Парадокс Монти Холла: неочевидное следствие условной вероятности. По сути дела то же, что и задача трёх узников.
  • Парадокс Симпсона: основные интересы подобщества могут оказаться совсем не основными во всём обществе. Поэтому если два ряда данных соответствуют одной определённой гипотезе, будучи объединёнными, они могут соответствовать противоположной гипотезе.
  • Задача спящей красавицы: Вероятностная задача, которая может иметь в качестве ответа 1/2 или 1/3 в зависимости от того, с какой стороны рассматривать вопрос.
  • Задача трёх карточек (англ.): истинная вероятность того, что обратная сторона случайно выбранной карты окажется того же цвета, что и верхняя, противоречит интуитивной оценке такой вероятности некоторыми людьми.
  • Парадокс двух конвертов: вам дают два одинаковых конверта и говорят, что один из них содержит в два раза больше денег, чем другой. Вы должны открыть один из них, проверить содержимое, а затем, не открывая другой, решить, какой из конвертов взять.
  • Парадокс пари: в некоторых ситуациях выгодно спорить обоим противникам, ибо оба имеют бо́льшие шансы на победу, чем на проигрыш.
  • Парадокс Ходжсона (англ.): отношение двух распределённых гауссово случайных переменных не имеет ни математического ожидания, ни дисперсии
  • Ошибка игрока (gambler’s fallacy) — (ложный вывод Монте-Карло) о том, что выгодно ставить на красное, если чёрное выпало 10 раз подряд.
  • Санкт-Петербургский парадокс: люди вряд ли будут играть в эту игру, хотя математическое ожидание выигрыша в ней бесконечно велико.
  • Парадокс закономерности: увидев явную закономерность в результатах серии испытаний (например, выпадение 10 000 раз подряд одного и того же варианта из двух возможных), мы будем склонны считать, что испытания не являются случайными. Однако появление любой другой последовательности из 10 000 значений в случайных испытаниях является настолько же маловероятным событием.